
Scalable Cluster Administration -
Chiba City I Approach and Lessons Learned

John-Paul Navarro, Rémy Evard, Dan Nurmi, Narayan Desai
Mathematics and Computer Science Division

Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439, USA

{navarro, evard, nurmi, desai}@mcs.anl.gov

Abstract

Systems administrators of large clusters often need to
perform the same administrative activity hundreds or
thousands of times. Often such activities are time-
consuming, especially the tasks of installing and
maintaining software. By combining network services
such as DHCP, TFTP, FTP, HTTP, and NFS with
remote hardware control, cluster administrators can
automate all administrative tasks.

Scalable cluster administration addresses the following
challenge: What systems design techniques can cluster
builders use to automate cluster administration on very
large clusters? We describe the approach used in the
Mathematics and Computer Science Division of Argonne
National Laboratory on Chiba City I, a 314-node Linux
cluster; and we analyze the scalability, flexibility, and
reliability benefits and limitations from that approach.

Introduction

In 1994 Thomas Sterling and Don Becker, then
working for NASA, built the first commodity
PC-based cluster using sixteen 486 DX4
systems. Commodity PC-based clusters
quickly gained momentum, and today many
educational and research organizations choose
them as the high-performance computing
platform of choice

The first step in automating cluster
administration generally involves setting up
one or more hosts to provide services used in
automated boot, build, and monitor and to

perform other cluster administration activities.
Common administration support services
include

o DHCP for network initialization
o TFTP for boot image delivery
o FTP, HTTP, NFS, and SMB for script and

software package delivery
o A configuration information delivery

service (database or file based)
o SNMP for monitoring and event

notification
o SYSLOG for OS and core service logging
o DNS for host name resolution
o NTP for time synchronization

In this paper we call machines providing these
services “management servers”. Most clusters
require very few management servers. For all
small clusters, and most medium to large
clusters, an organization’s existing
infrastructure servers may be capable of
providing these services to clusters.

To decide whether one or a small set of
management servers is sufficient, one must
determine how many clients will concurrently
use management services and how quickly
these management service requests must be
handled.

Services used during different phases in a
machine’s life cycle may have totally different

usage patterns. Network interface
configurations with DHCP and boot image
delivery with TFTP are generally only used at
machine boot time. File delivery using FTP,
HTTP, NFS, and SMB are used heavily during
machine build or upgrade. Logging
(SYSLOG), monitoring (SNMP), and remote
console services are most important during
normal operations and typically have constant,
low-level requirements.

As the size of a cluster grows and the build and
reconfiguration rate increases, the demand for
these services may exceed the capabilities of a
single machine or of the available
infrastructure servers. Possible first steps to
address this management scalability limitation
include separating services onto different
machines and upgrading servers so they can
service more requests. These steps are
generally enough to scale most management
services for large clusters.

What exactly are the scalability characteristics
of the various services? Some services, like
file delivery services, may need to deliver
hundreds of megabytes in order to build a
single node. How does one scale these services
so that hundreds of nodes can rebuild in a short
period of time? This paper present the scalable
cluster management approach used to address
these and similar questions on Chiba City I at
Argonne National Laboratory.

Importance of Management Scalability

For most clusters, management scalability is
not an issue, because the number of managed
nodes is low, the rebuild and reconfigure rate is
low, or rebuild and reconfiguration
performance is not a concern.

Management scalability matters on Chiba City
because its primary purpose is to be a
scalability testbed, built from open source

components, for the high-performance
computing and computer science communities.
As a scalability testbed, Chiba City is dedicated
to the research, development, and testing of
architectures, algorithms, software, and
protocols that push the scalability boundary of
clusters and the applications that run on them.

Although built and operated primarily using
open source software, the goal is for Chiba
City software to support installation and
operation of any open or closed-source
operating system on the non-management
nodes. In support of this objective we
developed a cluster administration toolkit,
called the City Toolkit, designed to support the
unattended installation of arbitrary operating
systems. Because Chiba City is a testbed, we
need to rebuild and reconfigure nodes
frequently and as quickly as possible. The
combination of a relatively large number of
nodes and a high rebuild and reconfiguration
rate makes a scalable cluster management
design critical.

With a scalable cluster management design
rebuilds, reconfigurations, and general
management activities can run quickly
improving efficiency and overall cluster
availability.

Today, using the City Toolkit, we can change a
master configuration database that specifies the
desired image (OS + configuration) for
managed nodes and complete a parallel rebuild
of all nodes in under 30 minutes. Our long-
term goal is to support node rebuilds on
demand, for example, to support rebuilding
nodes based on OS requirements specified in a
batch job, or to be able to quickly assign 500
nodes with a custom kernel to a kernel
developer for scalability testing and debugging.

Another reason scalable management matters is
that with the widespread adoption of clusters
for high-performance computing, we believe

the research and commercial communities will
deploy clusters with tens and hundreds of
thousands of nodes in the next 20 years. As a
scalability testbed, Chiba City must be able to
provide and environment where researchers
can investigate scalable management
challenges that will undoubtedly affect all very
large commodity PC-based clusters.

Chiba City Management Architecture

Figure 1 shows all the components in Chiba
City.

8 Computing Towns
(256 systems)

1 Visualization Town
(32 systems)

1 Storage Town
(8 systems)

Cluster Management
and Services
(18 systems)

High Performance
Myrinet Network

Management
Ethernet Network

Fig. 1. Diagram of Chiba City components

Physically, Chiba City comprises blocks of
physically contiguous nodes called towns. A
town consists of between 8 and 32 application-
usable nodes, one management node called a
mayor, an Ethernet network switch, serial
concentrators connecting node serial ports to

the mayor, and network-addressable remote
power controllers. Most Chiba City towns fit
into two racks. The only management-related
cables coming from the two town racks are
dual Gigabit Ethernet uplinks, one power
controller Ethernet network uplink, the mayor’s
serial port cable, and five power cables. A town
has all the hardware necessary to operate as an
independent subcluster. As a matter of fact
we’ve taken one such Chiba City town to a
conference.

Towns are not merely a physical partitioning
scheme. The concept defines how management
software and services--required to build,
configure, and operate the nodes in a town--
work. An example of that physical and
management link is the boot-and-build process
for nodes. When a node boots, it sends its boot
loader prompt (LILO or GRUB) over its serial
port. The town mayor, which runs serial port
monitoring software, detects that boot loader
prompt and sends a response, telling the node
either to boot or build. The build tools used to
build a node and the software packages
installed on that node are accessed from the
mayor via NFS or HTTP/FTP.

The mayor provides the following services:

o Relay or proxy access to the master cluster

database
o DHCP for configuring network interfaces
o Tftp access to boot images
o Console monitoring, logging, and

interactive access
o Rootnfs used during node build and for

node debugging
o NFS access to shared user software
o NFS, HTTP, or FTP access to software

packages installed during a build
o NFS-based file relay service for copying

files to or from the nodes before and after
job runs (Chiba City doesn’t have a global
general-purpose file system)

o Relay service for global management
commands

Managing the town mayors, login machines,
file servers, and a batch scheduler server is a
master management server called the president.
The president behaves exactly like a mayor to
the nodes it manages. The most significant
difference between mayors and the president is
that the president contains the master copy of
the images (OS + configuration), layered
software packages, and the master cluster
configuration database. Software is
synchronized between the president and the
mayors using rsync. The master configuration
database on the president is accessed using
proxies on mayors.

We chose this three level hierarchical design
because we felt it could architecturally be
extended to more levels, thus providing a form
of scalability. Using a ratio of32 managed
nodes to one management server we could
build a 1024-node cluster with the current three
levels in Chiba City. Using the same ratio but
expanding the design to four hierarchical
levels, we could operate a 32,000 node cluster.

As an example of how this management
hierarchy affects administrative activities, the
following steps describe the process of
modifying a node image and rebuilding a node
using the modified image. Briefly, images as
we defined them in the City tools are the
combination of disk initialization information
(partitions, file-system types, and initial file-
system contents), a collection of scripts that
drive the build process, and a set of software
packages and configuration files.

1. Change the appropriate node image on the

president (for example, change the desired
root file-system size).

2. Rsync all the images from the president to
the mayors.

3. Modify the master configuration database,
specifying which nodes need the new
image.

4. Reboot or remotely power cycle the nodes
that need the new image.

The nodes boot and are directed by their mayor
to build based on the database specified image.
When the nodes finish building they record so
in the master configuration database

Elements of the Chiba City Management
Architecture That Scaled Well

Overall we found many aspects of the Chiba
management architecture worked well on a
314-node cluster. The following sections
describe these aspects that, in principle, we feel
could be used to manage clusters with tens of
thousands of nodes.

Dedicated Management Servers

An important aspect of our design is that
management servers are not available to user
applications. Although that design decision
seems obvious to us, many people have
confronted us about the added hardware tax.
The separation is particularly important in our
environment because most cluster applications
expect dedicated access to nodes. Our cluster
build-and-configure software was designed to
run on Linux machines. The software
requirements for the management services are
often different from those of the application
software. For example, currently our
management and software runs under RedHat
7.1 but is capable of installing other versions of
RedHat or even totally different distributions
such as Mandrake and operating systems such
as FreeBSD.

Specialized Management Server Hardware

Management servers need a hardware
configuration targeted to running management
service. This hardware configuration often
differs from what user application nodes need.
For example, management servers often require
hundreds of gigabytes of disk to store or cache
software packages, high-performance gigabit
commodity networks to handle high
conventional TCP/IP communication loads,
and multiple CPUs to handle very high context
switching rates associated with many clients
making management service requests. To
fulfill these hardware requirements, one
generally must use high-end large footprint
hardware for management servers. In contrast,
large clusters typically look for very small
footprint machines to be the workhorses used
by cluster applications.

Master Management Server

Once settled on dedicated management servers,
one has to determine how to distribute services
between those servers. The approach used on
Chiba City was to give a single machine the
role of master management server which we
called the president. A president was the
authoritative source for all software and
configuration information, the recipient of all
status information, and the point from which
all administrative function could be issues. We
found this model to be straightforward and
easy to use. From the president we had the
ability to build, configure, and update other
management servers and to initiate
management operation that would be
forwarded to the mayors responsible for the
desired target nodes. We believe that a
canonical source for all software, from which
all management commands might be issued,
should scale to any size cluster. For this to be
the case, though, management software must
divided and delegated to operations to
subordinate management servers.

Using the master management server as the
home for the master configuration and state
database worked well from a conceptual point
of view. We have database performance issues
that will be discussed below.

Rebuildable Management Nodes

Once we established that we had single master
management server, the president, we were
able to build procedures for automatic
rebuilding of all other management servers. It
is even possible to rebuild a management node
and then transfer the master president role to it,
in effect upgrading the president. The
scalability advantage here is that by automating
management server builds, it becomes easy to
add more management servers.

Remote Power Control

Remote network-based power control is an
essential component of hands-off
administration. Without it, some
administrative and operational activities would
require individuals walking up and down aisles
of computer racks pushing buttons. This is
impractical, not just from a human time/cost
perspective, but also because of the likelihood
of pushing the wrong button.

Remote Console

We found a remote console to be a useful tool
for node identification, boot control, and
network failure diagnosis and recovery. In
vary large clusters a remote console may not be
essential if network or other techniques are
used to identify nodes and control the boot
process.

Parallel Management Algorithms

Early in the City Toolkit design we realized
that along with parallel hardware and
management servers independently managing a

subset of nodes, we also needed parallel
management software algorithms. One very
effective tool we relied on heavily is pdsh
(http://www.llnl.gov/icc/lc/pdsh.html).
Pdsh provides a simple thread based model for
executing commands on multiple nodes in
parallel.

As mentioned above, another essential design
point in scalable management software is
delegation. By taking a single centrally issued
command, splitting it into parallel components,
and delegating those to other management
servers arbitrary management operations can
scale to thousands of nodes and execute
quickly.

Elements of the Chiba Management
Architecture That Did Not Scale Well

Intro

Single point of failure

The master management server (i.e. president)
is a single point of failure. When this server
fails it may be impossible to issue
administrative commands or to perform any
operations that depend on the master
configuration services.

Management server hardware configuration

Specking and selecting the appropriate
management server hardware is more
important than we had originally thought. Care
should be taken that the appropriate amount of
RAM, CPUs, disk space, I/O bandwidth, and
network bandwidth is available on
management servers.

Hard mapping between managed and
management nodes

The most unscalable and problematic aspect of
the Chiba management architecture was the
direct dependence between a fixed set of
contiguous nodes and a single management
server. One consequence was very poor
management service load distribution which
caused poor service response due to
overloading on some management machines
others were effectively idle.

One example of how this might happen is that
the high performance cluster interconnect has
better performance between nodes that are
physically close together. To take advantage of
this the scheduler needs to assign nodes to jobs
in a contiguous range. Rebuilding or
reconfiguring nodes in a contiguous range
would place all the load on one or a few set of
management nodes while the rest are idle.

Management node failures affect a large
number of nodes.

When a mayor fails, all of the nodes beneath it
in the hierarchy cease to operate. It’s also
impossible to rebuild or reconfigure them
because the client to mayor link in wired in
hardware and software designs.

Console access through management nodes

Console access tied to mayors meant that if a
particular mayor was unavailable all the nodes
it managed could be unusable if the depended
on a management service like nfs based
software. Also we could not rebuild or
reconfigure them since management services
could only be provided by that one
management server.

All management servers providing most
services

Putting all management services on every
mayor created a headache for protocols that
could easily be serviced by a single machine.

http://www.llnl.gov/icc/lc/pdsh.html

For example DHCP and the configuration
database. In our particular case where all
Chiba City was under a single flat IP space,
running 11 DHCP servers on the same subnet
became a challenge.

Some services aren’t suited for a hierarchy

Some management services are difficult to
install and operate hierarchically (and don’t
require or benefit from it).

Picking the right management server to
managed node ratio for services

It’s impossible to pick the “right” ratio of
mayor to managed nodes since each service has
different scaling characteristics. For example,
the number of concurrent NTP or DHCP
requests that a single server can handle is
probably in the 100s or 1000s, while the
number of HTTP or FTP get requests for a
large RPM package is probably more in the 10-
20 range (if the management node has
approximate 10x better Ethernet bandwidth
than the nodes it manages). If both of these
classes of services are configured in a fixed 32
client to 1 server ratio we effectively using
more NTP and DHCP servers than we need and
fewer HTTP and FTP servers than could be
effectively utilized.

Hierarchical configuration and software push

Pushing configuration changes and commands
down the 3 level hierarchy is a time consuming
process. Having to deal with 4 or 5 levels
would be a serious problem. For example, to
apply software or configuration changes to
nodes requires applying the change on the
president, pushing the change iteratively down
the hierarchy, and finally apply the change on
the target machines. This multi-step, fixed
path, design is very vulnerable to cascading
failures. At one point we had 200 MB of
software required on every management node,

pushing this much software every time we
changed something was a slow and painful
process, even when using an intelligent push
tool like rsync.

Future work

The Chiba City scalable management approach
has taught us several lessons both about what
works well and what doesn’t. Moving forward
we’ve identified a new management
architecture we intend to investigate that could
be used to manage 1000s of nodes.

To avoid the problems associated with a multi-
level hierarchy while taking advantages of the
master and authoritative configuration and state
server we are beginning to explore a fixed 3
layer architecture.

Managed Nodes

Management Server Cluster

High-availability Master Servers

Intelligent Network

The top level is the master and authoritative
configuration and state server that we call the
president. The middle tier contains a collection
of management servers and devices that are

directly responsible for providing the network
services used to build the non-management
nodes. The final tier contains all the managed
nodes used by users and applications.

At first glance this architecture appears very
similar to the current Chiba City I architecture.
It’s different in the following ways: first, there
are only three levels in any size cluster, and
second, the middle tier can itself be thought of
as a cluster of machines dedicated to running
management services/applications. In this tier
there may be many different server
configurations dedicated to specific
management functions. There would be not
hard tie between managed nodes and specific
management nodes. Using either intelligent
network hardware or dynamically
reconfigurable protocols between managed and
management nodes. We also see the
possibility of using parallel programming
techniques, like MPI, to write parallel
management services. The number and type of
nodes used for each type of management
service would be flexible and based on
individual protocol requirements. Some
services may require a single machine for
almost any size cluster, for example, NTP or
DHCP. While other services, like FTP and
HTTP may require multiple machines behaving
as a load balanced mini-cluster.

We also intend to investigate the use of high-
availability techniques at the master
server/president level to reduce the likelihood
of not being able to operate the cluster when
the single most critical component in the
cluster fails.

We are investigating using automated caching
techniques in the middle tier to avoid pushing
updates from the master management server
down.

We’ve also identified two interesting
approaches to load balancing and mapping

managed nodes to management nodes. First
the use of intelligent networking hardware and
second more client centric techniques like
client selected round robin with failure
detection and retry.

We see parallelization of management
application and command as essential
technique for scalable cluster management.

Reference:

www.beowulf.org Information on Beowulf and
Commodity PC based clusters.

D.J. Becker, T.L. Sterling, D.F. Savarese, J.E.
Dorband, U.A. Ranawak, and C.V. Packer.
Beowulf: A Parallel Workstation for Scientific
Computation. Proceedings of the International
Conference on Parallel Processing, 1995.

T. Sterling, D. Becker. How to Build a
Beowulf.

www.top500.org. Top 500 super-computers in
the world.

D. S. Greenberg, R. B. Brightwell, L. A. Fisk,
A. B. Maccabe, and R. E. Riesen. A System
Software Architecture for High-End
Computing. Proceedings of Supercomputing
'97, 1997.

J. Challenger, P. Dantzin, A. Iyengar. A
Scalable and Highly Available System for
Serving Dynamic Data at Frequently Accessed
Web Sites. Proceedings of Supercomputing
’98, 1998.

B. Dempsey, D. Weiss. On the Performance
and Scalability of a Data Mirroring Approach
for I2-DSI. Network Storage Symposium
Proceedings, 1999.

The City Toolkit:
http://www.mcs.anl.gov/systems/software/

http://www.beowulf.org/
http://www.top500.org/
http://www.supercomp.org/sc97/proceedings/TECH/GREENBER/INDEX.HTM
http://www.supercomp.org/sc97/proceedings/TECH/GREENBER/INDEX.HTM
http://www.supercomp.org/sc97/proceedings/TECH/GREENBER/INDEX.HTM
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Challenger602/index.htm
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Challenger602/index.htm
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Challenger602/index.htm
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Challenger602/index.htm
http://dsi.internet2.edu/netstore99/docs/papers/dempsey.pdf
http://dsi.internet2.edu/netstore99/docs/papers/dempsey.pdf
http://dsi.internet2.edu/netstore99/docs/papers/dempsey.pdf
http://www.mcs.anl.gov/systems/software/

The parallel distributed shell (PDSH):
http://www.llnl.gov/icc/lc/pdsh.html

J. Challenger, A. Yyengar, P. Dantzig. A
scalable system for consistently caching
dynamic web data. Proceedings of IEEE
INFOCOM ’99, p. 294-303. March 1999, New
York.

A. Fox, S. D. Gribble, Y. Chawathe, E. A.
Brewer, P. Gauthier. Cluster-based scalable
network services. Proceedings of the Sixteenth
ACM Symposium on Operating Systems
Principles. P. 78-91. October 1997, Saint Malo,
France.

B. Gronvall, A. Westernlund, S. Pink. The
design of a multicast-based distributed file
system. Proceeding of the Third Symposium on
Operating Systems Design and
Implementation. P. 251-64, February 1999,
New Orleans.

V. Jacobson. Congestion avoidance and
control. SIGCOMM ’88 Symposium:
Communications Architectures and Protocols.,
p. 314-29, August 1988, Stanford.

A. Luotonen, K. Altis. World-Wide Web
proxies. Computer Networks and ISDN
Systems 27, no. 2: p. 147-54, November 1994.

V. S. Pai, M. Aron, G. Banga, M. Svendsen, P.
Druschel, W. Zwaenepoel, E. Nahum. Locality
aware request distribution in cluster-based
network servers. ASPLOSS-VIII. Eighth
International Conference on Architectural
Support for Programming Languages and
Operating Systems, p. 205-16, October 1998,
San Jose.

http://www.llnl.gov/icc/lc/pdsh.html

	Scalable Cluster Administration -�Chiba City I Approach and Lessons Learned

